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Viscous Fluid Universe Interacting with Scalar Field 
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Taking a spherically symmetric isotropic line element, the case of a viscous fluid 
distribution interacting with scalar field is investigated. Four new solutions are 
obtained and the models are found to be expanding ones. Their physical and 
geometrical properties are studied. 

1. I N T R O D U C T I O N  

It is well known that meson particles w~th the charge of the electron 
and masses of  the order of  magnitude of 200 electron masses are found in 
cosmic rays. These particles have a good deal to do with the nulcear forces. 
The scalar meson field is a matter field and is associated with zero-spin 
chargeless particles such as 7r and K mesons. The study of such a field in 
general relativity has been initiated to provide an understanding of the 
nature of  space-time and the gravitational field associated with neutral 
elementary particles of  zero spin. Scalar fields, as they help in explaining 
the creation of  matter in cosmological  theories, represent matter fields with 
spinless quanta and can describe the gravitational fields. Yukawa (1935) 
introduced the short-range meson field. Yukawa's  theory is based on the 
assumption that all interactions must be transmitted through space from 
point to point by the mediation of  a field, which is consistent with the 
principle of  relativity; that is, the equations must be Lorentz-invariant. 

Subsequently many authors took interest in the study of scalar fields. 
For example,  Das (1962), Hyde (1963), and Das and Agarwal (1974) 
obtained solutions for the coupled gravitational and scalar fields. Rao et 
al. (1976) studied the interaction of a massive scalar field with a perfect 
fluid for the conformally flat, spherically symmetric metric. Banerjee and 
Santosh (1981), Froyland (1982), and Accioly et al. (1984) obtained different 
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solutions for Einstein's field equations taking consideration of scalar fields. 
On the other hand, various authors (e.g., Heller et al., 1973; Heller and 
Klimek, 1975; Lukars, 1981; Haiti, 1982) studied the importance of viscous 
fluid from the cosmological solution point of view. 

Here the motivation for taking the scalar field in addition to the viscous 
fluid as energy-momentum tensor is with a view to obtaining solutions for 
the cosmological model and to study its physical properties. It is noted that 
all the normal stresses are equal due to the spherical symmetry assumed 
and the shear viscosity factor drops from the field equations. The bulk 
viscosity need not be zero for the viscous fluid distribution interacting with 
the scalar field. The coefficient of bulk viscosity ff in the process of studying 
the solutions is found to be accompanied by a Change in volume (that is, 
in density). 

2. FIELD EQUATIONS 

For this problem the line element considered is 

d s  2 = e ~ d t  2 -  e~ ( dr2 + r 2 d O 2 +  r 2 sin 2 0 dO 2) (1) 

where/3 is a function of r and t, and y is a function of t only. 
The energy-momentum tensor for a viscous fluid interacting with a 

massive scalar field is given by 

= + ( 2 )  

where R~,~ and S~,~ are, respectively, the energy-momentum tensors for the 
viscous fluid and the massive scalar field. 

Here, 

R ~  = p u . u ~  + ( p  - ~ O ) H ~  - 2W%~ (3) 

where/9 is the isotropic pressure, p is the fluid density, [ and ~7 are the 
coefficients of bulk and shear viscosity, 0 = u;~. is the expansion factor of 
the fluid lines, H~,v is the projection tensor defined by 

H~,~ = u~u~ - g~,~ 

cr~.~ is the shear tensor given by 

1 T T 

and u~ is the flow vector satisfying the relation 

g ~ u ~ u ~  = 1 (4) 

In addition, 

q~ . q~. - s g . ~  ( ~,~q~ - M Zq~ 2) (5) 
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where  the scalar  potent ia l  ~ = ~(r ,  t) satisfies the K l e i n - G o r d o n  equat ion 

g~'~q~;~.~ + M 2 ~  = e (6) 

Here ,  e = e(r,  t) is the  source  densi ty o f  the scalar  field and M is related 
to the mass  of  the zero-spin  particle by M =  m / h  ( h  = h/27r, where h is  
Planck 's  constant) .  

Cons ider ing  the comoving  coordinate  system, we  get 

u 1 = u2=  u 3 = 0, u4=  e -~/2 (7) 

We note  that  the or thogonal i ty  condi t ions for  viscous fluid are satisfied 
here identically, name ly  

H.~u  ~ = 0 

o'~,,u" = 0 
(8) 

s  u = 0 

ti~u ~ = 0 

where  ~i~ = u~; .H  '~ are accelera t ion componen t s ,  and w ~  are rota t ion 
tensors given by 

1 "r ~- ~o~ = ~( u,~;.H ~ - u~;~H ,~) 

Thus for  the line e lement  (1) the Einstein field equat ions given by 

G~ = - 8 7 r G T ~  

are 

"/~'~ W" / _~). 

= - 8 r  2) (9) 

\ 2 2r ]  -r-4 I~ - - - 2 )  

= - 8 z r G ( p  - ~0) +41rG(e-~cp ' 2 -  e-r~b 2 + M2cp 2) (10) 

= 81rG 0 + 4 ~ ' G ( e - ~ ' 2  + e-:'~b 2 + M2~  2) (11) 

- 1 ~ ' =  8 r (12) 
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In this paper  an overdot and a prime denote partial differentiation with 
respect to t and with respect to r, respectively, and a semicolon followed 
by a subscript denotes covariant differentiation. 

3. S O L U T I O N S  OF T H E  FIELD EQUATIONS 

3.1. Case I 

In this case the number  of  unknowns to be determined is greater than 
the number  of  equations at hand. Therefore, we need more equations for 
solving the unknowns. Thus we assume some relations and try to solve the 
field equations. 

Subtracting (10) from (9), we have 

/3,, /3, /3,2 ,2 
= - 8  ~rG~o (13) 

2 2r 4 

3.1.1. Case I(A) 

In this case we take 

Then from (13) we get 

which gives 

167rG~p,2 =/3,2 (14) 

0 
2 4 2r 

/3 = 2 log(r2/4 - k) - m (15) 

where m is an arbitrary constant and k is an arbitrary function of  time. 
Thus, from (14) we get 

r 
~ ' =  (16) (~G)l/2(r2-4k) 

Now from (12) and (16) we have 

2k 
~= (1rG)l/2(r2_4k) (17) 

Then (16) and (17) give 

1 
= 2(zrG)l/~ l o g ( r : - 4 k )  (18) 
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From (9) and (10) we get 

167rGp - 16~rG~O + 87rGe-V(~ 2 - 8~GM2~ 2 

= e-0 ( - ~ + - ~ +  ~ r ' )  - 2e-~(f l  +~/~2-~-~ ) 

which gives 

1 p = 2--~{ 16e m (r2 - 4k) -3 + e - V ( r  2 - 4k)-2(2r2/~ + 4k/~ 

-8k/~ - 20/~ 2 - i~4/r 2 ) - 2 4 ~ r G ~ k e - r / 2 (  r E - 4k)-1 

-4e-v/~2( r 2 _ 4k)-2 + ~M2[log(r 2 _ 4k)]2} (19) 

Again from (11) we get 
M 2 

p - 4k)]2J = ~ G  { e-~/~2(r 2 4 k ) - 2 - 2 5 6 e " ( r 2 - 4 k ) ( r 2 - 6 k ) - - - - 8 - [ l o g ( r 2 -  

(20) 

Also from (6) we have 

[ (2  f l )  ] _ e _  v[ (3  2)  ] e - / 3  + M 2 ~ = e  

which gives 

e = ( 1 r G ) - l / E [ 4 8 ( r  2 - 4 k )  -3 exp(3~ + m) - 16/~2(r 2 -  4k) -2 

+ (2/~- ~/~) (r 2 - 4 k )  -1 +�89 2 log(r 2 -4k ) ]  (21) 

3.1.2.  C a s e  I ( B )  

In this case we assume 

Then from (13) we get 

which gives 

87rG~o '2 = f l ' / 2 r  (22) 

[ 3 " / 2  - [ 3a14  = 0 

fl = g - 2  log(c - r / 2 )  (23) 

where c is an arbitrary constant and g is an arbitrary function of time. Thus 
from (22) and (23) we get 

! \ 1/2 

(8~.G)l/2 sm ~c + cl (24) 

where c I is an arbitrary constant. 
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Now from (9) and (10) we have 

[ r \ , / 2  2 
P=16;a{24~.G~,e_.~/2+ M2[ - 2 s in_l~cc) _~_ Cl] } 8,~a k.(8.,.,.~)l,,~ 

3c 
+ - -  e -g  + 2 e -  r ( l g 3  ~ _ ~ _ ]g2 )  _ �88  ( 2 5 )  

2r 

From (11) we get 

___z____/_'f3e_g 3 , 2 9c 
P = 8~rG(8 +-~e- g, -4-~e -e" 

-47rGM 2 2(8r -1/2 sin -1 +Cl (26) 

Also from (6) we have 

e=3c(87ra)-'/2e-gr-3/2(2c-r)l/2+M~[2(87ra)-l/2sin-'(~c)l/2+c,] 

(27) 

3 .2 .  C a s e  II 

Here we take M = 0 and e = 0. In this case the field equations (9)-(12) 
become 

/fl'~ ~ , ,  _ ~ )  
- e - ~  ~ - ~ - - + r ) +  e- ' ( /3"+]/3  z 

= -87rG(p  - ~'0) - 4~'G(e-t3q~ '2 + e- Z'~b 2) (28) 

-- e-r (fl" + fl"~ -t- e-~ (/~" + ~/~ 2 - - -~ )  
\ 2 2r/ 

= -8~rG(p - ~0) + 4~G(e- t~ ,  '2 - e-:'~b 2) (29) 

_t3/' ,, 1 ,2 2 /~ ' \  - e  ~/3 +a/?  + 7 ) + 3 e - ~ / 3 2  

= 8rrGp + 4rrG(e-13q~ '2 + e - V ~  2) 

and 
-/~'= 8 ~6',r 

We also have two conservation equations given by 

T~;,, = 0 

namely, 

0 3 " - - y / 2 _  {3fl,+4~(_p+3~fle-y/2 ~r (-p+5~fle l e - ' @ 2 )  --  \ r ]  --  �89 = 0 

(30) 

(31) 

(32) 
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and 
~6_}3(p_~.p)~ -~ , . ,  --,/... 1-- , / .2 .  3 - T ' . 2  9 - y / 2 " 2  + e  ~o~o+e ~,~-~e ~ 3,+~e /3~0-a~'e /3 =0  (33) 

The Klein-Gordon equation becomes in this case 

g*"~;~ = 0 

which gives 

e-~ [ qg"+ (~ + - ~ ) q ~ ' ] -  e-'~ [ (6 + ( 3 / 3 -  2)~b ] =0  

3.2.1. Case  H ( A )  

In this case we assume 

Then from (34) we get 

which gives 

(34) 

=0  (35) 

q~"+(2 / r+  / 3 ' / 2 ) ~ ' = O  

~0' = y r - 2 e  -t3/2 

where Y is an arbitrary function of time. 
Here, we take the case 

Y = - t  

~ '  = _ tr -2e-r  

Thus from (36) we get 

From (28) and (29) we have 

e -~ -t 2r 4 = 8 ~ G e - ~ a  

that is, 

/3,, /3,2 /3, 8 rrGr-4 t2 e -~ 
2 4 2r 

[using (38)]. A solution of this equation is 

13 = log 87rG+ 2 log t - 2  log r 

From (38) and (40) we get 

= a - (8rrG) -1/2 log r 

where a is an arbitrary constant. 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 
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Again from (28) and (29) we have 

,, ,2 , { ,3~2 t ~  
16~rG(p -  ~O)=e-t3(/3"+fl"+3fl'~\ 2 4 2r ] - 2 e - "  \[3 *~lJ - y )  

which gives 

1 
167rGp = 48~rG~t-1 e-Y~2 + 

8 ~rG 

Also from (30) we get 

1 
8"n'Gp = l - ~ G  t-2 + 3t-2 e -~ 

Now using (42) and (43) in (33), we have 

e-~t -1 - e - ~ +  t-l/24~rG = 0 

the solution of which is 

where b is an arbitrary constant. 
Thus, from (42) we get 

p = 3~t-l(bt -1 

Also from (43) we have 

3.2.2. Case H(B) 

In this case we take 

t -Z+2e-~( t -2- t - '~)  (42) 

(43) 

(44) 

1 ] 1/2 1 t -  2 
+ (45) 

24ziG] 24~rG 

Then from (34) we get 

3b  t -  3 1 . t_  2 (46) 
P = 8 - - ~  - 1287r2G 2 

~ ' = 0  (47) 

+ (3/~ _�89 b = 0 (48) 

From (9) and (10) we have 

/3. /3,2 /3 ,=0  
2 4 2r 

A solution of this equation is 

/3 = log z - 4 log r 

where z is an arbitrary function of time. 

(49) 
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Now from (48) and (49) we get 

(o = - f e ~ / 2  z-3/2 r6 (50) 

where f is an arbitrary function of r. Since r is independent of r [by our 
assumption (47)], therefore in view of (50) we take 

f =  Co r-6 (51) 

where Co is an arbitrary constant. 
Then 

= - - C o e Y / 2 z  -3 /2  (52) 

Again adding up (28) and (29), we get 

167rGp - 16~rGr O + 8 7rGe-V (~ 2 

{B~2+]~"+3fl '~ _ r [ . .  3_. 2 " y '  
= e - ~ , - 4 -  2 -  ~ - r J ' 2 e  / / 3 + , / 3  \ 4 

which gives 

e 4 Oc z 

) - e  7 4z  2 2z ~ 

Also from (30) we get 

8 ~rGo = ~ e-~' ( i / z ) 2 - 4 7rGc~z -3 

Now using (53) and (54) in (32), we have 

, 4 ~ i 3 ' ~ =  0 
4z 2 2z ] 

that is, 

Therefore, 

.. ~2 ~ ) 
-1 -~ z 5, = 0 

- 8 r  e z 4z 2 2z 

the solution of which is 

f = O  
2 4Z 2 2z 

Y = log(cz-1/2~2) 

where c is a constant of integration. 

(53) 

(54) 

(55) 

(56) 
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Now f rom (53) and  (56) we get 

p 3~,C-I/2Z-3/4~ __ ~CoZI 2 -3  

Again f rom (54) and (56) we have 

3 _ - - 3 / 2  1 ̂ 2  _ - 3  
p = z - - ~ r  z 

327rGc 

Here  (52) and  (56) give 

: 4 c 0 c l / 2 z - 3 / 4 -  ~- Cl 

where c~ is an arbi t rary constant.  

(57) 

(58) 

(59) 

8e -  r/r 2 + 12 ~rG~'/r ( r  2 - 4 k ) e - V / 2  + � 8 8  +/r 2) 

-> 28em(r 2 - 4 k ) 3 ( r  2 -  6k) + e ~(r2/r k/~p) 

+ 8 e m ( r ~ - 4 k ) - ~ + ~ M 2 ( r ~ - 4 k ) 2 [ l o g ( r 2 - 4 k ) ]  2 (63) 

The "expans ion  fac tor"  0 of  the fluid lines is given by 

12/~ 
- -  e - v / 2  (64) 0 4 k - r  2 

and 

4. C O N C L U S I O N S  

4.1. Case I(A) 

In this case the line e lement  takes the fo rm 

ds  2 = e ~ d t  2 - e - m ( ~ r  2 - k ) 2 ( d r  2 + r 2 d 0 2 +  r 2 sin 2 0 de  2) (60) 

where m is an arbi t rary constant  and  y and k are arbi t rary funct ions of  time. 
Here  the fluid densi ty and  the pressure both  are found  to be decreasing 

funct ions o f  r. 
Now,  for  this mode l  to be  a realistic one we must  have the fol lowing 

restrictions: 

(i) p > 0  
(ii) p > 0  

(iii) p >  p 

which respect ively give 

e-~/~2+3 . 2 9 k e m ( r 2 - 4 k )  3 

> 2 8 e m r 2 ( r 2 - 4 k ) 3 + ~ M 2 ( r 2 - 4 k ) 2 [ l o g ( r 2 - 4 k ) ]  z (61) 

3 . 2 5  ~rG~l~e -~/2 + 2 e - 7  ( r 2 _ 4k)-1(8 k/~'+ 28/~ 2 + k~r 2) 

-< 26e" ( r  2 - 4k)-2  + M2( r 2 _ 4k)[ log(  r 2 - 4k)  ]2 

+ 23 e - r (  r2/~ + k/r r 2 - 4k)-1 (62) 
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We see that the source density of  the scalar field is a decreasing function 
of  r and the scalar potential ~0 is a decreasing function of time. 

The rotation tensors w~j and the shear tr all come out to be zero. 
For this model the spectral shift in wavelength, as measured at the 

origin, will be 

(A q- ~a )/A ----- b I e -~'/2 

where bl is an arbitrary constant. 

(65) 

of  r. 
For this model, the spectral shift will be 

(A + •A)/A --- c2 e-~/2 

where c2 is an arbitrary constant. 

and 

e-g + 3e-r~2 + 2e-r~ 

>_ 24rrG~g,e -~/2 + 6cr-l e -g + eTr5~g, 

+ 16rrGMg[2(8rrG) -~/2 sin-~(r/2c)l/2+ cd 2 (69) 

The expansion factor of  the fluid lines is given by 

0 = 3e- ' /2g  (70) 

Here also, the source density of  the scalar field is a decreasing function 

(71) 

4.2.  Case  I (B)  

In this case the metric takes the form 

ds2=e~dt2-(c-�89 (66) 

where c is an arbitrary constant and g and 3' are arbitrary functions of  time. 
Here the fluid density and the pressure both are found to be decreasing 

with the increase of  radial distance, but not appreciably. 
For this model to be a realistic one we must have the restrictions 

3 r(e -g + 2e-Vg2) 

> 32rrGM2r[2(8rrG) -~/2 sin-l(r/2c)l /2+ cl]2+ 18ce-g (67) 

48rrG~g,e-:'/2 + 3cr-l e-g + 2e-:'~/g 

+ 16rrGM2[2(8rrG) -1/2 sin " ( r /2c ) ' /2+ Cl] 2 

>- 4e- '~  + 3 e-r~, 2 + �89 -g (68) 
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4.3. Case II(A) 

In this case the line element comes out to be 

ds2=(\247rGb24 ~rG_t_ t ) dt2-81rGt2r-2(dr2+r2 dO2+rE sin2 0dq~2) (72) 

Here the pressure and the fluid density are both decreasing functions 
of  time. 

The temporal  history of the model does not span the entire time period 
0 < t < oo since it is restricted by the reality conditions involving the density 
and the pressure. For a realistic distribution we must have 

487rGb > t (73) 

0 < t <- 24zrGb (74) 

and 

3b t -  3 1 [1 1 \ - 2  -1 [ -1 )1/2 

From (73)-(75) we obtain the limits within which t must lie as 

0 < t < 247rGb (76) 

In this model the scalar field comes out to be a function of r only and 
it decreases with the increase of  r. 

Here the rotation tensors to o are identically zero. The shear tr also 
happens to be zero. 

The "expansion factor" 0 of  the fluid lines is given by 

O = 3 t - l ( b t  -1 1 .~112 
247rG/  (77) 

Since the expansion factor is positive here, we see that our model universe 
in this case is an expanding one. 

For this model, the spectral shift in wavelength, as measured at the 
origin, will be 

A +~A / 1 \1/2 
= b l l b t  -1 ----  | (78) 

A \ 2 4 ~ G )  

where b and bl are arbitrary constants. 

4.4. Case II(B) 

In this case the line element takes the form 

ds 2 = cz-1/2~ 2 dt 2 - zr-4( dr2 + r 2 dO 2 + r 2 sin 2 0 d~ 2) (79) 

where c is an arbitrary constant and z is an arbitrary function of time. 
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Here the pressure and the fluid density both decrease with time, but 
not appreciably. 

For the distribution to be a realistic one we must have 

z > (16r 2/3 (80) 

Z >~ (C~C|/2/3~)4/9 (81) 

Z <-- ( c -~ /2 /16~G~)  4/3 (82) 

Thus the limitations for the temporal history of  the model  are given by 
( C--1/2 ~ 4/3 

@7rGc2oc) 2/3 < z <- (83) 
\ 1 6 7 r G ~ /  

In this model the scalar field comes out to be a function of  time only 
and it decreases with the increase of  time. 

The rotation tensors to o and the shear cr are identically zero. 
The "expansion factor" 0 is given by 

0:3C--1/2Z--3/4 (84) 

Since the expansion factor is positive, we see that our model universe in 
this case is an expanding one. 

For this model  the spectral shift will be 

(1~ "~- ~ )/1~ = C2Z1/4( i ) -1 (85) 

where c2 is an arbitrary constant and z is an arbitrary function of  time. 
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